八方休閒論壇

 找回密碼
 註冊

掃一掃,訪問微社區

搜索
熱搜: 活動 交友 discuz
查看: 1014|回復: 0
打印 上一主題 下一主題

第七章 黑洞不是這麽黑的

[複製鏈接]

0

主題

0

帖子

35

積分

新手上路

Rank: 1

積分
35
跳轉到指定樓層
1#
發表於 2007-1-27 10:41:30 | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式

在1970年以前,我關于廣義相對論的研究,主要集中于是否存在一個大爆炸奇點。
然而,同年11月我的女兒露西出生後不久的一個晚上,當我上床時,我開始思考黑洞的
問題。我的殘廢使得這個過程相當慢,所以我有許多時間。那時候還不存在關于空間—
—時間的那一點是在黑洞之內還是在黑洞之外的准確定義。我已經和羅傑·彭羅斯討論
過將黑洞定義爲不能逃逸到遠處的事件集合的想法,這也就是現在被廣泛接受的定義。
它意味著,黑洞邊界——即事件視界——是由剛好不能從黑洞逃逸而永遠只在邊緣上徘
徊的光線在空間——時間裏的路徑所形成的(圖7.1)。這有點像從警察那兒逃開,但是
僅僅只能比警察快一步,而不能徹底地逃脫的情景!



    圖7.1
    我忽然意識到,這些光線的路徑永遠不可能互相靠近。如果它們靠近了,它們最終
就必須互相撞上。這正如和另一個從對面逃離警察的人相遇——你們倆都會被抓住:
(或者,在這種情形下落到黑洞中去。)但是,如果這些光線被黑洞所吞沒,那它們就
不可能在黑洞的邊界上呆過。所以在事件視界上的光線的路徑必須永遠是互相平行運動
或互相散開。另一種看到這一點的方法是,事件視界,亦即黑洞邊界,正像一個影子的
邊緣——一個即將臨頭的災難的影子。如果你看到在遠距離上的一個源(譬如太陽)投
下的影子,就能明白邊緣上的光線不會互相靠近。
    如果從事件視界(亦即黑洞邊界)來的光線永遠不可能互相靠近,則事件視界的面
積可以保持不變或者隨時間增大,但它永遠不會減小——因爲這意味著至少一些在邊界
上的光線必須互相靠近。事實上,只要物質或輻射落到黑洞中去,這面積就會增大(圖
7.2);或者如果兩個黑洞碰撞並合並成一個單獨的黑洞,這最後的黑洞的事件視界面積
就會大于或等于原先黑洞的事件視界面積的總和(圖7.3)。事件視界面積的非減性質給
黑洞的可能行爲加上了重要的限制。我如此地爲我的發現所激動,以至于當夜沒睡多少。
第二天,我給羅傑·彭羅斯打電話,他同意我的結果。我想,事實上他已經知道了這個
面積的性質。然而,他是用稍微不同的黑洞定義。他沒有意識到,假定黑洞已終止于不
隨時間變化的狀態,按照這兩種定義,黑洞的邊界以及其面積都應是一樣的。



    圖7.2圖7.3
    人們非常容易從黑洞面積的不減行爲聯想起被叫做熵的物理量的行爲。熵是測量一
個系統的無序的程度。常識告訴我們,如果不進行外加幹涉,事物總是傾向于增加它的
無序度。(例如你只要停止保養房子,看會發生什麽?)人們可以從無序中創造出有序
來(例如你可以油漆房子),但是必須消耗精力或能量,因而減少了可得到的有序能量
的數量。
    熱力學第二定律是這個觀念的一個准確描述。它陳述道:一個孤立系統的熵總是增
加的,並且將兩個系統連接在一起時,其合並系統的熵大于所有單獨系統熵的總和。譬
如,考慮一盒氣體分子的系統。分子可以認爲是不斷互相碰撞並不斷從盒子壁反彈回來
的康樂球。氣體的溫度越高,分子運動得越快,這樣它們撞擊盒壁越頻繁越厲害,而且
它們作用到壁上的向外的壓力越大。假定初始時所有分子被一隔板限制在盒子的左半部,
如果接著將隔板除去,這些分子將散開並充滿整個盒子。在以後的某一時刻,所有這些
分子偶爾會都呆在右半部或回到左半部,但占絕對優勢的可能性是在左右兩半分子的數
目大致相同。這種狀態比原先分子在左半部分的狀態更加無序,所以人們說熵增加了。
類似地,我們將一個充滿氧分子的盒子和另一個充滿氮分子的盒子連在一起並除去中間
的壁,則氧分子和氮分子就開始混合。在後來的時刻,最可能的狀態是兩個盒子都充滿
了相當均勻的氧分子和氮分子的混合物。這種狀態比原先分開的兩盒的初始狀態更無序,
即具有更大的熵。
    和其他科學定律,譬如牛頓引力定律相比,熱力學定律的狀況相當不同,例如,它
只是在絕大多數的而非所有情形下成立。在以後某一時刻,所有我們第一個盒子中的氣
體分子在盒子的一半被發現的概率只有幾萬億分之一,但它們可能發生。但是,如果附
近有一黑洞,看來存在一種非常容易的方法違反第二定律:只要將一些具有大量熵的物
體,譬如一盒氣體扔進黑洞裏。黑洞外物體的總熵就會減少。當然,人們仍然可以說包
括黑洞裏的熵的總熵沒有降低——但是由于沒有辦法看到黑洞裏面,我們不能知道裏面
物體的熵爲多少。如果黑洞具有某一特征,黑洞外的觀察者因之可知道它的熵,並且只
要攜帶熵的物體一落入黑洞,它就會增加,那將是很美妙的。緊接著上述的黑洞面積定
理的發現(即只要物體落入黑洞,它的事件視界面積就會增加),普林斯頓一位名叫雅
可布·柏肯斯坦的研究生提出,事件視界的面積即是黑洞熵的量度。由于攜帶熵的物質
落到黑洞中去,它的事件視界的面積就會增加,這樣黑洞外物質的熵和事件視界面積的
和就永遠不會降低。
    看來在大多數情況下,這個建議不違背熱力學第二定律,然而還有一個致命的瑕疵。
如果一個黑洞具有熵,那它也應該有溫度。但具有特定溫度的物體必須以一定的速率發
出輻射。從日常經驗知道:只要將火鉗在火上燒至紅熱就能發出輻射。但在低溫下物體
也發出輻射;通常情況下,只是因爲其輻射相當小而沒被注意到。爲了不違反熱力學第
二定律這輻射是必須的。所以黑洞必須發出輻射。但正是按照其定義,黑洞被認爲是不
發出任何東西的物體,所以看來,不能認爲黑洞的事件視界的面積是它的熵。1972年,
我和布蘭登·卡特以及美國同事詹姆·巴丁合寫了一篇論文,在論文中我們指出,雖然
在熵和事件視界的面積之間存在許多相似點,但還存在著這個致命的困難。我必須承認,
寫此文章的部份動機是因爲被柏肯斯坦所激怒,我覺得他濫用了我的事件視界面積增加
的發現。然而,最後發現,雖然是在一種他肯定沒有預料到的情形下,但他基本上還是
正確的。
    1973年9月我訪問莫斯科時,和蘇聯兩位最主要的專家雅可夫·捷爾多維奇和亞曆山
大·斯塔拉賓斯基討論黑洞問題。他們說服我,按照量子力學不確定性原理,旋轉黑洞
應産生並輻射粒子。在物理學的基礎上,我相信他們的論點,但是不喜歡他們計算輻射
所用的數學方法。所以我著手設計一種更好的數學處理方法,並于1973年11月底在牛津
的一次非正式討論會上將其公布于衆。那時我還沒計算出實際上輻射多少出來。我預料
要去發現的正是捷爾多維奇和斯塔拉賓斯基所預言的從旋轉黑洞發出的輻射。然而,當
我做了計算,使我既驚奇又惱火的是,我發現甚至非旋轉黑洞顯然也以不變速率産生和
發射粒子。起初我以爲這種輻射表明我所用的一種近似無效。我擔心如果柏肯斯坦發現
了這個情況,他就一定會用它去進一步支持他關于黑洞熵的思想,而我仍然不喜歡這種
思想。然而,我越仔細推敲,越覺得這近似其實應該有效。但是,最後使我信服這輻射
是真實的理由是,這輻射的粒子譜剛好是一個熱體輻射的譜,而且黑洞以剛好防止第二
定律被違反的准確速率發射粒子。此後,其他人用多種不同的形式重複了這個計算,他
們所有人都證實了黑洞必須如同一個熱體那樣發射粒子和輻射,其溫度只依賴于黑洞的
質量——質量越大則溫度越低。
    我們知道,任何東西都不能從黑洞的事件視界之內逃逸出來,何以黑洞會發射粒子
呢?量子理論給我們的回答是,粒子不是從黑洞裏面出來的,而是從緊靠黑洞的事件視
界的外面的“空”的空間來的!我們可以用以下的方法去理解它:我們以爲是“真空”
的空間不能是完全空的,因爲那就會意味著諸如引力場和電磁場的所有場都必須剛好是
零。然而場的數值和它的時間變化率如同不確定性原理所表明的粒子位置和速度那樣,
對一個量知道得越准確,則對另一個量知道得越不准確。所以在空的空間裏場不可能嚴
格地被固定爲零,因爲那樣它就既有准確的值(零)又有准確的變化率(也是零)。場
的值必須有一定的最小的不准確量或量子起伏。人們可以將這些起伏理解爲光或引力的
粒子對,它們在某一時刻同時出現、互相離開、然後又互相靠近而且互相湮滅。這些粒
子正如同攜帶太陽引力的虛粒子:它們不像真的粒子那樣能用粒子加速器直接探測到。
然而,可以測量出它們的間接效應。例如,測出繞著原子運動的電子能量發生的微小變
化和理論預言是如此相一致,以至于達到了令人驚訝的地步。不確定性原理還預言了類
似的虛的物質粒子對的存在,例如電子對和誇克對。然而在這種情形下,粒子對的一個
成員爲粒子而另一成員爲反粒子(光和引力的反粒子正是和粒子相同)。
    因爲能量不能無中生有,所以粒子反粒子對中的一個參與者有正的能量,而另一個
有負的能量。由于在正常情況下實粒子總是具有正能量,所以具有負能量的那一個粒子
注定是短命的虛粒子。它必須找到它的伴侶並與之相湮滅。然而,一顆接近大質量物體
的實粒子比它遠離此物體時能量更小,因爲要花費能量抵抗物體的引力吸引才能將其推
到遠處。正常情況下,這粒子的能量仍然是正的。但是黑洞裏的引力是如此之強,甚至
在那兒一個實粒子的能量都會是負的。所以,如果存在黑洞,帶有負能量的虛粒子落到
黑洞裏變成實粒子或實反粒子是可能的。這種情形下,它不再需要和它的伴侶相湮滅了,
它被抛棄的伴侶也可以落到黑洞中去。啊,具有正能量的它也可以作爲實粒子或實反粒
子從黑洞的鄰近逃走(圖7.4)。對于一個遠處的觀察者而言,這看起來就像粒子是從黑
洞發射出來一樣。黑洞越小,負能粒子在變成實粒子之前必須走的距離越短,這樣黑洞
發射率和表觀溫度也就越大。



    圖7.4
    輻射出去的正能量會被落入黑洞的負能粒子流所平衡。按照愛因斯坦方程E=mc^2
(E是能量,m是質量,c爲光速),能量和質量成正比。所以往黑洞去的負能量流減少它
的質量。當黑洞損失質量時,它的事件視界面積變小,但是它發射出的輻射的熵過量地
補償了黑洞的熵的減少,所以第二定律從未被違反過。
    還有,黑洞的質量越小,則其溫度越高。這樣當黑洞損失質量時,它的溫度和發射
率增加,因而它的質量損失得更快。人們並不很清楚,當黑洞的質量最後變得極小時會
發生什麽。但最合理的猜想是,它最終將會在一個巨大的、相當于幾百萬顆氫彈爆炸的
發射爆中消失殆盡。
    一個具有幾倍太陽質量的黑洞只具有千萬分之一度的絕對溫度。這比充滿宇宙的微
波輻射的溫度(大約2.7K)要低得多,所以這種黑洞的輻射比它吸收的還要少。如果宇
宙注定繼續永遠膨脹下去,微波輻射的溫度就會最終減小到比這黑洞的溫度還低,它就
開始損失質量。但是即使那時候,它的溫度是如此之低,以至于要用100億億億億億億億
億年(1後面跟66個O)才全部蒸發完。這比宇宙的年齡長得多了,宇宙的年齡大約只有
100到200億年(1或2後面跟10個0)。另一方面,正如第六章 提及的,在宇宙的極早期
階段存在由于無規性引起的坍縮而形成的質量極小的太初黑洞。這樣的小黑洞會有高得
多的溫度,並以大得多的速率發生輻射。具有10億噸初始質量的太初黑洞的壽命大體和
宇宙的年齡相同。初始質量比這小的太初黑洞應該已蒸發完畢,但那些比這稍大的黑洞
仍在輻射出X射線以及伽瑪射線。這些X 射線和伽瑪射線像是光波,只是波長短得多。這
樣的黑洞幾乎不配這黑的綽號:它們實際上是白熱的,正以大約1萬兆瓦的功率發射能量。
    只要我們能夠駕馭黑洞的功率,一個這樣的黑洞可以開動十個大型的發電站。然而,
這是非常困難的:這黑洞的質量和一座山差不多,卻被壓縮成萬億之一英寸亦即比一個
原子核的尺度還小!如果在地球表面上你有這樣的一個黑洞,就無法阻止它透過地面落
到地球的中心。它會穿過地球而來回振動,直到最後停在地球的中心。所以僅有的放置
黑洞並利用之發出能量的地方是繞著地球轉動的軌道,而僅有的將其放到這軌道上的辦
法是,用在它之前的一個大質量的吸引力去拖它,這和在驢子前面放一根胡羅蔔相當像。
至少在最近的將來,這個設想並不現實。
    但是,即使我們不能駕馭這些太初黑洞的輻射,我們觀測到它們的機遇又如何呢?
我們可以去尋找在太初黑洞壽命的大部分時間裏發出的伽瑪射線輻射。雖然它們在很遠
以外的地方,從大部分黑洞來的輻射非常弱,但是從所有它們來的總的輻射是可以檢測
得到的。我們確實觀察到了這樣的一個伽瑪射線背景:圖7.5表示觀察到的強度隨頻率的
變化。然而,這個背景可以是也可能是除了太初黑洞之外的過程産生的。圖7.5中點線指
出,如果在每立方光年平均有300個太初黑洞,它們所發射的伽瑪射線的強度應如何地隨
頻率而變化。所以可以說,伽瑪射線背景的觀測並沒給太初黑洞提供任何正的證據。但
它們確實告訴我們,在宇宙中每立方光年不可能平均有300個以上的太初黑洞。這個極限
表明,太初黑洞最多只能構成宇宙中百萬分之一的物質。



    圖7.5
    由于太初黑洞是如此之稀罕,看來不太可能存在一個近到我們可以將其當作一個單
獨的伽瑪射線源來觀察。但是由于引力會
    圖7.5將太初黑洞往任何物質處拉近,所以在星系裏面和附近它們應該會更稠密得多。
雖然伽瑪射線背景告訴我們,平均每立方光年不可能有多于300個太初黑洞,但它並沒有
告訴我們,太初黑洞在我們星系中的密度。譬如講,如果它們的密度高100萬倍,則離開
我們最近的黑洞可能大約在10億公裏遠,或者大約是已知的最遠的行星——冥王星那麽
遠。在這個距離上去探測黑洞恒定的輻射,即使其功率爲1萬兆瓦,仍是非常困難的。人
們必須在合理的時間間隔裏,譬如一星期,從同方向檢測到幾個伽瑪射線量子,以便觀
測到一個太初黑洞。否則,它們僅可能是背景的一部份。因爲伽瑪射線有非常高的頻率,
從普郎克量子原理得知,每一伽瑪射線量子具有非常高的能量,這樣甚至發射一萬兆瓦
都不需要許多量子。而要觀測到從冥王星這麽遠來的如此少的粒子,需要一個比任何迄
今已造成的更大的伽瑪射線探測器。況且,由于伽瑪射線不能穿透大氣層,此探測器必
須放到外空間。
    當然,如果一顆像冥王星這麽近的黑洞已達到它生命的末期並要爆炸開來,去檢測
其最後爆炸的輻射是容易的。但是,如果一個黑洞已經輻射了100至200億年,不在過去
或將來的幾百萬年裏,而是在未來的若幹年裏到達它生命的終結的可能性真是相當小!
所以在你的研究津貼用光之前,爲了有一合理的機會看到爆炸,必須找到在大約1光年距
離之內檢測任何爆炸的方法。你仍需要一個相當大的伽瑪射線探測器,以便去檢測從這
爆炸來的若幹伽瑪射線量子。然而,在這種情形下,不必去確定所有的量子是否來自同
一方向,只要觀測到所有它們是在一個很短的時間間隔裏來到的,就足夠使人相當確信
它們是從同一爆炸來的。
    整個地球大氣可以看作是一個能夠認出太初黑洞的伽瑪射線探測器。(無論如何,
我們不太可能造出比這更大的探測器!)當一個高能的伽瑪射線量子打到我們大氣的原
子上時,它會産生出電子正電子(反電子)對。當這些對打到其他原子上時,它們依序
會産生出更多的電子正電子對,所以人們得到了所謂的電子陣雨。其結果是産生稱作切
倫科夫輻射的光的形式。因而,我們可以由尋找夜空的閃光來檢測伽瑪射線爆。當然,
存在許多其他現象,如閃電和太陽光從翻跟鬥的衛星以及軌道上的碎片的反射,都能在
天空發出閃光。人們可在兩個或更多的隔開相當遠的地點同時觀察這閃光,將伽瑪射線
爆從以上所說的現象中識別出來。兩位都柏林的科學家奈爾·波特和特勒伏·威克斯利
用阿曆桑那州的望遠鏡進行了這類的探索。他們找到了一些閃光,但沒有一個可以確認
爲是從太初黑洞來的伽瑪射線爆。
    即使對太初黑洞的探索證明是否定的,並且看來可能會是這樣,仍然給了我們關于
極早期宇宙的重要信息。如果早期宇宙曾經是紊亂或無規的,或者物質的壓力很低,可
以預料到會産生比我們對伽瑪射線背景所作的觀測所設下的極限更多的太初黑洞。只有
當早期宇宙是非常光滑和均勻的,並有很高的壓力,人們才能解釋爲何沒有觀測到太初
黑洞。
    ◎◎◎◎◎
    黑洞輻射的思想是第一個這樣的例子,它以基本的方式依賴于本世紀兩個偉大理論
即廣義相對論和量子力學所作的預言。因爲它推翻了已有的觀點,所以一開始就引起了
許多反對:“黑洞怎麽會輻射東西出來?”當我在牛津附近的盧瑟福——阿普頓實驗室
的一次會議上,第一次宣布我的計算結果時,受到了普遍質疑。我講演結束後,會議主
席、倫敦國王學院的約翰·泰勒宣布這一切都是毫無意義的。他甚至爲此還寫了一篇論
文。然而,最終包括約翰·泰勒在內的大部分人都得出結論:如果我們關于廣義相對論
和量子力學的其他觀念是正確的,黑洞必須像熱體那樣輻射。這樣,即使我們還不能找
到一個太初黑洞,大家相當普遍地同意,如果找到的話,它必須正在發射出大量的伽瑪
射線和X射線。
    黑洞輻射的存在看來意味著,引力坍縮不像我們曾經認爲的那樣是最終的、不可逆
轉的。如果一個航天員落到黑洞中去,黑洞的質量將增加,但是最終這額外質量的等效
能量會以輻射的形式回到宇宙中去。這樣,此航天員在某種意義上被“再循環”了。然
而,這是一種非常可憐的不朽,當他在黑洞裏被撕開時,他的任何個人的時間的概念幾
乎肯定都達到了終點,甚至最終從黑洞輻射出來的粒子的種類一般都和構成這航天員的
不同:這航天員所遺留下來的僅有特征是他的質量或能量。
    當黑洞的質量大于幾分之一克時,我用以推導黑洞輻射的近似應是很有效的。但是,
當黑洞在它的生命晚期,質量變成非常小時,這近似就失效了。最可能的結果看來是,
它至少從宇宙的我們這一區域消失了,帶走了航天員和可能在它裏面的任何奇點(如果
其中確有一個奇點的話)。這是量子力學能夠去掉廣義相對論預言的奇點的第一個迹象。
然而,我和其他人在1974年所用的方法不能回答諸如量子引力論中是否會發生奇性的問
題。所以從1975年以來,根據理查德·費因曼對于曆史求和的思想,我開始發展一種更
強有力的量子引力論方法。這種方法對宇宙的開端和終結,以及其中的諸如航天員之類
的存在物給出的答案,這些將在下兩章中敘述。我們將看到,雖然不確定性原理對于我
們所有的預言的准確性都加上了限制,同時它卻可以排除掉發生在空間——時間奇點處
的基本的不可預言性。
分享到:  微信微信
收藏收藏
您需要登錄後才可以回帖 登錄 | 註冊

本版積分規則

Archiver|手機版|小黑屋|8FUN NET  

GMT-6, 2024-11-23 20:42 , Processed in 0.043886 second(s), 24 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表